
OpenMP

Category: Porting & Developing Applications

DRAFT

This article is being reviewed for completeness and technical accuracy.

OpenMP is a portable, scalable model that gives shared-memory parallel programmers a
simple and flexible interface for developing parallel applications for various platforms.

Intel version 11.x compilers support OpenMP spec-3.0 while 10.x compilers support
spec-2.5.

Building OpenMP Applications

The following Intel compiler options can be used for building or analyzing OpenMP
applications:

-openmp

Enables the parallelizer to generate multithreaded code based on OpenMP
directives. The code can be executed in parallel on both uniprocessor and
multiprocessor systems. The -openmp option works with both -O0 (no optimization)
and any optimization level of -O. Specifying -O0 with -openmp helps to debug
OpenMP applications.

Note that setting -openmp also sets -automatic, which causes all local, non-SAVEd
variables to be allocated to the run-time stack, which may provide a performance
gain for your applications. However, if your program depends on variables having the
same value as the last time the routine was invoked, your program may not function
properly. If you want to cause variables to be placed in static memory, specify option
-save. If you want only scalar variables of certain intrinsic types (integer, real,
complex, logical) to be placed on the run-time stack, specify option -auto-scalar.

•

-assume cc_omp or -assume nocc_omp

-assume cc_omp enables conditional compilation as defined by the OpenMP Fortran
API. That is, when "!$space" appears in free-form source or "c$spaces" appears in
column 1 of fixed-form source, the rest of the line is accepted as a Fortran line.

-assume nocc_omp tells the compiler that conditional compilation as defined by the
OpenMP Fortran API is disabled unless option -openmp (Linux) or /Qopenmp

•

OpenMP 1

(Windows) is specified.

-openmp-lib legacy or -openmp-lib compat

Choosing -openmp-lib legacy tells the compiler to use the legacy OpenMP run-time
library (libguide). This setting does not provide compatibility with object files created
using other compilers. This is the default for Intel version 10.x compilers.

Choosing -openmp-lib compat tells the compiler to use the compatibility OpenMP
run-time library (libiomp). This is the default for Intel version 11.x compilers.

On Linux systems, the compatibility Intel OpenMP run-time library lets you combine
OpenMP object files compiled with the GNUgcc or gfortran compilers with similar
OpenMP object files compiled with the Intel C/C++ or Fortran compilers. The linking
phase results in a single, coherent copy of the run-time library.

You cannot link object files generated by the Intel® Fortran compiler to object files
compiled by the GNU Fortran compiler, regardless of the presence or absence of the
-openmp (Linux) or /Qopenmp (Windows) compiler option. This is because the
Fortran run-time libraries are incompatible.

NOTE: The compatibility OpenMP run-time library is not compatible with object files
created using versions of the Intel compiler earlier than 10.0.

•

-openmp-link dynamic or -openmp-link static

Choosing -openmp-link dynamic tells the compiler to link to dynamic OpenMP
run-time libraries. This is the default for Intel version 11.x compilers.

Choosing -openmp-link static tells the compiler to link to static OpenMP run-time
libraries.

Note that the compiler options -static-intel and -shared-intel have no effect on which
OpenMP run-time library is linked.

Note that this option is only available for newer Intel compilers (version 11.x).

•

-openmp-profile

Enables analysis of OpenMP applications. To use this option, you must have Intel(R)
Thread Profiler installed, which is one of the Intel(R) Threading Tools. If this
threading tool is not installed, this option has no effect.

Note that Intel Thread Profiler is not installed on Pleiades.

•

-openmp-report[n]•

Category: Porting & Developing Applications 2

Controls the level of diagnostic messages of the OpenMP parallelizer. n=0,1,or 2.

-openmp-stub

Enables compilation of OpenMP programs in sequential mode. The OpenMP
directives are ignored and a stub OpenMP library is linked.

•

OpenMP Environment Variables

There are a few OpenMP environment variables one can set. The most commonly used
are:

OMP_NUM_THREADS num

Sets number of threads for parallel regions. Default is 1 on Pleiades. Note that you
can use ompthreads in the PBS resource request to set values for
OMP_NUM_THREADS. For example:

%qsub -I -lselect=1:ncpus=4:ompthreads=4
Job 991014.pbspl1.nas.nasa.gov started on Sun Sep 12 11:33:06 PDT 2010
...
PBS r3i2n9> echo $OMP_NUM_THREADS
4
PBS r3i2n9>

•

OMP_SCHEDULE type[,chunk]

Sets the run-time schedule type and chunk size. Valid OpenMP schedule types are
static, dynamic, guided, or auto. Chunk is a positive integer.

•

OMP_DYNAMIC true or OMP_DYNAMIC false

Enables or disables dynamic adjustment of threads to use for parallel regions.

•

OMP_STACKSIZE size

Specifies size of stack for threads created by the OpenMP implementation. Valid
values for size (a positive integer) are size, sizeB, sizeK, sizeM, sizeG. If units B, K,
M or G are not specified, size is measured in kilobytes (K).

Note that this feature is included in OpenMP spec-3.0, but not in spec-2.5.

•

Note that Intel also provides a few additional environment variables. The most commonly
used are:

KMP_AFFINITY type•

Category: Porting & Developing Applications 3

Binds OpenMP threads to physical processors. Avaiable type: compact, disabled,
explicit, none, scatter. For more information on the various types, see this Intel web
page.

There is a conflict between KMP_AFFINITY in Intel 11.x runtime
library and dplace, causing all threads to be placed on a
single CPU when both are used. It is recommended that
KMP_AFFINITY be set to disabled when using dplace.

KMP_MONITOR_STACKSIZE

Sets stacksize in bytes for monitor thread.

•

KMP_STACKSIZE

Sets stacksize in bytes for each thread.

•

For more information, please see the official OpenMP web site.

Article ID: 209
Last updated: 21 Jun, 2011
Computing at NAS -> Porting & Developing Applications -> OpenMP
http://www.nas.nasa.gov/hecc/support/kb/entry/209/?ajax=1

Category: Porting & Developing Applications 4

http://software.intel.com/sites/products/documentation/studio/composer/en-us/2009/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm#KMP_AFFINITY_Environment_Variable
http://software.intel.com/sites/products/documentation/studio/composer/en-us/2009/compiler_c/optaps/common/optaps_openmp_thread_affinity.htm#KMP_AFFINITY_Environment_Variable
http://openmp.org/wp/
http://www.nas.nasa.gov/hecc/support/kb/entry/209/?ajax=1

	209.html

